An Intermediate Look at Git + GitHub

U of T Scientific Coders

University of Toronto

October 1, 2015

fd7ade4: gh-pages Create 2015-10-08-Coworkingd.markd. ..
c3cb768: Merge pull request #41 from mbonsma/gh-pages
e2764b7: Incorporated PR comments into Biopython/less. ..

d212bdd: Merge remote-tracking branch ‘upstream/gh-p. ..

85791b7: Added start and end time to event post

Outline

Review

Viewing History

Branching

B Collaborating with Others

Section 1

Review

Review

m Configure your git client (git config user.name +
user.email)

m Create a git repository (git init)

Review

m Configure your git client (git config user.name +
user.email)

m Create a git repository (git init)

Working Repository
Direct

|rec.ory Index/ o
“‘Y-Pr‘”“tg/it/ Staging Area Y

foo/

bar/

baz.txt

qux.txt

Review

m Configure your git client (git config user.name +
user.email)

m Create a git repository (git init)

Working Repository
Direct

recton etz Histor
my_ proJectg/lt/ STOgihg Area i

foo/ /—> (Snapshot)

bar/ foo/

baz.txt oo

qux txt E baz.txt

m Start fracking a file with git (git add)

Review

m Configure your git client (git config user.name +
user.email)

m Create a git repository (git init)

Working Repository
Directory
Index .
my_project/ . / History
Staging Area

.git/

Egg; [— (Snapsho:io/\)

qﬁi E;t: E baz.txt o

m Start fracking a file with git (git add)
m Commit changes to the history (git commit)

Review

m Configure your git client (git config user.name +
user.email)

m Create a git repository (git init)

Working Repository
Directory
Index .
my_project/ . / History
Staging Area

.git/

Egg; [— (Snapsho:io/\)

qﬁi E;t: E baz.txt o

m Start fracking a file with git (git add)

m Commit changes to the history (git commit)

m Check what’s going on (git status)

m Compare a file with the one in the history (git diff)
m Look into your history (git log)

Section 2

Viewing History

Viewing History

Viewing the log allows you to “see” history:
B git log

Viewing History

Viewing the log allows you to “see” history:
B git log
git log <start>..<end>
git log -- <file>

|

|

W git log --oneline
W git log --graph
|

git log -—-graph --decorate

Viewing History

Viewing the log allows you to “see” history:
B git log
git log <start>..<end>

git log -- <file>

|

|

W git log --oneline
W git log --graph
|

git log -—-graph --decorate

B git blame <file>

Viewing History

Viewing the log allows you to “see” history:
B git log
git log <start>..<end>

git log -- <file>

|

|

W git log --oneline
W git log --graph
|

git log -—-graph --decorate

B git blame <file>

B gitk + gitg + other viewers

Section 3

Branching

Branches

What are branches?

m Divergent commits (tfwo commits with the same
parent) could be considered “virtual” branches

Branches

What are branches?

m Divergent commits (tfwo commits with the same
parent) could be considered “virtual” branches

m Branches are simply a named pointer to a commit

Branches

What are branches?

m Divergent commits (tfwo commits with the same
parent) could be considered “virtual” branches

m Branches are simply a named pointer to a commit

m Branches automatically move forward as commits are
made

Branches

What are branches?

m Divergent commits (tfwo commits with the same
parent) could be considered “virtual” branches

m Branches are simply a named pointer to a commit

m Branches automatically move forward as commits are
made

Why use them?

Branches

What are branches?

m Divergent commits (tfwo commits with the same
parent) could be considered “virtual” branches

m Branches are simply a named pointer to a commit

m Branches automatically move forward as commits are
made

Why use them?

m They're cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.

Branches

What are branches?

m Divergent commits (tfwo commits with the same
parent) could be considered “virtual” branches

m Branches are simply a named pointer to a commit

m Branches automatically move forward as commits are
made

Why use them?

m They're cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.

m To keep experimental work apart

Branches

What are branches?

m Divergent commits (tfwo commits with the same
parent) could be considered “virtual” branches

m Branches are simply a named pointer to a commit

m Branches automatically move forward as commits are
made

Why use them?

m They're cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.

m To keep experimental work apart
m To separate trials

Branches

What are branches?

m Divergent commits (tfwo commits with the same
parent) could be considered “virtual” branches

m Branches are simply a named pointer to a commit

m Branches automatically move forward as commits are
made

Why use them?

m They're cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.

m To keep experimental work apart
m To separate trials
m To ease collaboration

Branches

Managing branches:
B git branch <name> [commit]
B git branch -d <name>
B git branch [-1]

Branches

Managing branches:
B git branch <name> [commit]
B git branch -d <name>
B git branch [-1]
Switching branches:
B git checkout <branch name>

B git checkout -b <branch name> [commit] — Create
and switch in one go

Branches

Managing branches:
B git branch <name> [commit]
B git branch -d <name>
B git branch [-1]
Switching branches:
B git checkout <branch name>

B git checkout -b <branch name> [commit] — Create
and switch in one go

Merging branches:
B git merge <other branch name>
B git merge --ff-only <other branch name>

B git merge --no-ff <other branch name>

Section 4

Collaborating with Others

Clones and Remotes

Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

Clones and Remotes

Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

B git clone <URI>

Clones and Remotes

Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

B git clone <URI>
Remotes are poinfers to other clones

Clones and Remotes

Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

B git clone <URI>
Remotes are poinfers to other clones
B git remote [-v]
B git remote add <name> <URI>
B git remote rm <name>

m Local branches can track remote branches
git branch -u <remote branch> <local branch>

Clones and Remotes

Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

B git clone <URI>
Remotes are poinfers to other clones
B git remote [-v]
B git remote add <name> <URI>
B git remote rm <name>

m Local branches can track remote branches
git branch -u <remote branch> <local branch>

You are responsible for syncing
B git push [<remote>] [<branch>]
B git fetch [<remote>]
B git pull [<remote>] — fetch + merge

GitHub Example

Section 5

Advanced Topics

Advanced Topics

B git add --patch

Advanced Topics

B git add --patch

B git rebase

	Review
	Viewing History
	Branching
	Collaborating with Others
	Appendix
	Advanced Topics

