
An Intermediate Look at Git + GitHub

U of T Scientific Coders

University of Toronto

October 1, 2015

fd7a4e4: gh-pages Create 2015-10-08-Coworking4.markd. . .
c3cb768: Merge pull request #41 from mbonsma/gh-pages

e2764b7: Incorporated PR comments into Biopython/less. . .
d212bdd: Merge remote-tracking branch ‘upstream/gh-p. . .

85791b7: Added start and end time to event post
b83b3e0: Merge remote-tracking branch ‘upstream/gh-p. . .

0b7d78c: Create 2015-10-01-MoreObGit.markdown
c188bb0: Merge pull request #48 from lwjohnst86/gh-pages



Outline

1 Review

2 Viewing History

3 Branching

4 Collaborating with Others

1 / 13



Section 1

Review

2 / 13



Review
Configure your git client (git config user.name +
user.email)
Create a git repository (git init)

Working
Directory
my_project/

.git/
foo/
bar/
baz.txt
qux.txt
...

Repository
Index/

Staging Area History

10

9

8

Start tracking a file with git (git add)
Commit changes to the history (git commit)
Check what’s going on (git status)
Compare a file with the one in the history (git diff)
Look into your history (git log)

3 / 13



Review
Configure your git client (git config user.name +
user.email)
Create a git repository (git init)

Working
Directory
my_project/

.git/
foo/
bar/
baz.txt
qux.txt
...

Repository
Index/

Staging Area History

10

9

8

Start tracking a file with git (git add)
Commit changes to the history (git commit)
Check what’s going on (git status)
Compare a file with the one in the history (git diff)
Look into your history (git log)

3 / 13



Review
Configure your git client (git config user.name +
user.email)
Create a git repository (git init)

Working
Directory
my_project/

.git/
foo/
bar/
baz.txt
qux.txt
...

Repository
Index/

Staging Area
(Snapshot)

foo/
baz.txt
...

History

10

9

8

Start tracking a file with git (git add)

Commit changes to the history (git commit)
Check what’s going on (git status)
Compare a file with the one in the history (git diff)
Look into your history (git log)

3 / 13



Review
Configure your git client (git config user.name +
user.email)
Create a git repository (git init)

Working
Directory
my_project/

.git/
foo/
bar/
baz.txt
qux.txt
...

Repository
Index/

Staging Area
(Snapshot)

foo/
baz.txt
...

History

10

9

8

Start tracking a file with git (git add)
Commit changes to the history (git commit)

Check what’s going on (git status)
Compare a file with the one in the history (git diff)
Look into your history (git log)

3 / 13



Review
Configure your git client (git config user.name +
user.email)
Create a git repository (git init)

Working
Directory
my_project/

.git/
foo/
bar/
baz.txt
qux.txt
...

Repository
Index/

Staging Area
(Snapshot)

foo/
baz.txt
...

History

10

9

8

Start tracking a file with git (git add)
Commit changes to the history (git commit)
Check what’s going on (git status)
Compare a file with the one in the history (git diff)
Look into your history (git log)

3 / 13



Section 2

Viewing History

4 / 13



Viewing History

Viewing the log allows you to “see” history:
git log

git log <start>..<end>

git log -- <file>

git log --oneline

git log --graph

git log --graph --decorate

git blame <file>

gitk + gitg + other viewers

5 / 13



Viewing History

Viewing the log allows you to “see” history:
git log

git log <start>..<end>

git log -- <file>

git log --oneline

git log --graph

git log --graph --decorate

git blame <file>

gitk + gitg + other viewers

5 / 13



Viewing History

Viewing the log allows you to “see” history:
git log

git log <start>..<end>

git log -- <file>

git log --oneline

git log --graph

git log --graph --decorate

git blame <file>

gitk + gitg + other viewers

5 / 13



Viewing History

Viewing the log allows you to “see” history:
git log

git log <start>..<end>

git log -- <file>

git log --oneline

git log --graph

git log --graph --decorate

git blame <file>

gitk + gitg + other viewers

5 / 13



Section 3

Branching

6 / 13



Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches

Branches are simply a named pointer to a commit
Branches automatically move forward as commits are
made

Why use them?

They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.
To keep experimental work apart
To separate trials
To ease collaboration

7 / 13



Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches
Branches are simply a named pointer to a commit

Branches automatically move forward as commits are
made

Why use them?

They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.
To keep experimental work apart
To separate trials
To ease collaboration

7 / 13



Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches
Branches are simply a named pointer to a commit
Branches automatically move forward as commits are
made

Why use them?

They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.
To keep experimental work apart
To separate trials
To ease collaboration

7 / 13



Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches
Branches are simply a named pointer to a commit
Branches automatically move forward as commits are
made

Why use them?

They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.
To keep experimental work apart
To separate trials
To ease collaboration

7 / 13



Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches
Branches are simply a named pointer to a commit
Branches automatically move forward as commits are
made

Why use them?
They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.

To keep experimental work apart
To separate trials
To ease collaboration

7 / 13



Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches
Branches are simply a named pointer to a commit
Branches automatically move forward as commits are
made

Why use them?
They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.
To keep experimental work apart

To separate trials
To ease collaboration

7 / 13



Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches
Branches are simply a named pointer to a commit
Branches automatically move forward as commits are
made

Why use them?
They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.
To keep experimental work apart
To separate trials

To ease collaboration

7 / 13



Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches
Branches are simply a named pointer to a commit
Branches automatically move forward as commits are
made

Why use them?
They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.
To keep experimental work apart
To separate trials
To ease collaboration

7 / 13



Branches

Managing branches:
git branch <name> [commit]

git branch -d <name>

git branch [-l]

Switching branches:
git checkout <branch name>

git checkout -b <branch name> [commit] — Create
and switch in one go

Merging branches:
git merge <other branch name>

git merge --ff-only <other branch name>

git merge --no-ff <other branch name>

8 / 13



Branches

Managing branches:
git branch <name> [commit]

git branch -d <name>

git branch [-l]

Switching branches:
git checkout <branch name>

git checkout -b <branch name> [commit] — Create
and switch in one go

Merging branches:
git merge <other branch name>

git merge --ff-only <other branch name>

git merge --no-ff <other branch name>

8 / 13



Branches

Managing branches:
git branch <name> [commit]

git branch -d <name>

git branch [-l]

Switching branches:
git checkout <branch name>

git checkout -b <branch name> [commit] — Create
and switch in one go

Merging branches:
git merge <other branch name>

git merge --ff-only <other branch name>

git merge --no-ff <other branch name>

8 / 13



Section 4

Collaborating with Others

9 / 13



Clones and Remotes
Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

git clone <URI>

Remotes are pointers to other clones
git remote [-v]

git remote add <name> <URI>

git remote rm <name>

Local branches can track remote branches
git branch -u <remote branch> <local branch>

You are responsible for syncing
git push [<remote>] [<branch>]

git fetch [<remote>]

git pull [<remote>] — fetch + merge

10 / 13



Clones and Remotes
Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

git clone <URI>

Remotes are pointers to other clones
git remote [-v]

git remote add <name> <URI>

git remote rm <name>

Local branches can track remote branches
git branch -u <remote branch> <local branch>

You are responsible for syncing
git push [<remote>] [<branch>]

git fetch [<remote>]

git pull [<remote>] — fetch + merge

10 / 13



Clones and Remotes
Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

git clone <URI>

Remotes are pointers to other clones

git remote [-v]

git remote add <name> <URI>

git remote rm <name>

Local branches can track remote branches
git branch -u <remote branch> <local branch>

You are responsible for syncing
git push [<remote>] [<branch>]

git fetch [<remote>]

git pull [<remote>] — fetch + merge

10 / 13



Clones and Remotes
Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

git clone <URI>

Remotes are pointers to other clones
git remote [-v]

git remote add <name> <URI>

git remote rm <name>

Local branches can track remote branches
git branch -u <remote branch> <local branch>

You are responsible for syncing
git push [<remote>] [<branch>]

git fetch [<remote>]

git pull [<remote>] — fetch + merge

10 / 13



Clones and Remotes
Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

git clone <URI>

Remotes are pointers to other clones
git remote [-v]

git remote add <name> <URI>

git remote rm <name>

Local branches can track remote branches
git branch -u <remote branch> <local branch>

You are responsible for syncing
git push [<remote>] [<branch>]

git fetch [<remote>]

git pull [<remote>] — fetch + merge

10 / 13



GitHub Example



Section 5

Advanced Topics

12 / 13



Advanced Topics

git add --patch

git rebase

13 / 13



Advanced Topics

git add --patch

git rebase

13 / 13


	Review
	Viewing History
	Branching
	Collaborating with Others
	Appendix
	Advanced Topics


