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Review
Configure your git client (git config user.name +
user.email)
Create a git repository (git init)

Working
Directory
my_project/

.git/
foo/
bar/
baz.txt
qux.txt
...

Repository
Index/

Staging Area History

10

9

8

Start tracking a file with git (git add)
Commit changes to the history (git commit)
Check what’s going on (git status)
Compare a file with the one in the history (git diff)
Look into your history (git log)
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Viewing History
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Viewing History

Viewing the log allows you to “see” history:
git log

git log <start>..<end>

git log -- <file>

git log --oneline

git log --graph

git log --graph --decorate

git blame <file>

gitk + gitg + other viewers
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Branching
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Branches

What are branches?
Divergent commits (two commits with the same
parent) could be considered “virtual” branches

Branches are simply a named pointer to a commit
Branches automatically move forward as commits are
made

Why use them?

They’re cheap! Just pointers. No heavy changes,
e.g., an extra directory in svn.
To keep experimental work apart
To separate trials
To ease collaboration
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Branches

Managing branches:
git branch <name> [commit]

git branch -d <name>

git branch [-l]

Switching branches:
git checkout <branch name>

git checkout -b <branch name> [commit] — Create
and switch in one go

Merging branches:
git merge <other branch name>

git merge --ff-only <other branch name>

git merge --no-ff <other branch name>
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Collaborating with Others
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Clones and Remotes
Clones are complete copies of a repository’s history (i.e.,
excluding the index and working directory)

git clone <URI>

Remotes are pointers to other clones
git remote [-v]

git remote add <name> <URI>

git remote rm <name>

Local branches can track remote branches
git branch -u <remote branch> <local branch>

You are responsible for syncing
git push [<remote>] [<branch>]

git fetch [<remote>]

git pull [<remote>] — fetch + merge
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GitHub Example
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Advanced Topics
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Advanced Topics

git add --patch

git rebase
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